Command Line
Simply:
- Install Langdrive:
npm isntall langdrive
- Train a model:
`langdrive train` + [...Args]`
Here are your Args:
yaml
: Path to optional YAML config doc, default Value: './langdrive.yaml'. This will load up any class and query for records and their values for both inputs and ouputs.csv
: Path to training data. The training data should be a two-column CSV of input and output pairs.hfToken
: An API key provided by Hugging Face withwrite
permissions. Get one here.baseModel
: The original model to train. This can be one of the models in our supported models shown at the bottom of this pagedeploy
: Weather training weights should be hosted in a hosting service. Default False.deployToHf
: Whether traiing weights should be stored in huggingface specifically. Either true | falsehfModelPath
: The full path to your hugging face model repo where the model should be deployed. Format: hugging face username/modelinputValue
: The input value to extract from the data retrieved, default: 'input'outputValue
: The output value to extract from the data retrieved, default: 'output'
CLI args are parsed as YAML when running commands.
this is a non-exhaustive list of valid operations
langdrive train
langdrive train --yaml "../pathToYaml.yaml"
langdrive train --hfToken 1234 --csv "../shared.csv"
langdrive train --hfToken 1234 --csv ../shared.csv --inputValue "inputColname" --outputValue "colname"
langdrive train --csv "./tests/midjourney_prompt.csv" --deploy